recursion$94738$ - Übersetzung nach griechisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

recursion$94738$ - Übersetzung nach griechisch

Alpha recursion; Α-recursion theory

recursion      
n. αναδρομή
well founded         
TYPE OF BINARY RELATION
Well-founded set; Well-founded; Wellfounded; Well-foundedness; Well-founded order; Well-founded induction; Well-founded relations; Wellfounded relation; Noetherian induction; Hereditarily well-founded set; Well-founded recursion; Wellfounded recursion; Noetherian recursion; Wellfounded induction; Wellfoundedness; Noetherian relation; Well founded; Foundational relation
βάσιμος
endless loop         
  • A [[blue screen of death]] on [[Windows XP]]. "The [[device driver]] got stuck in an infinite loop."
PROGRAMMING IDIOM
Endless loop; Loop, Infinite; Infinite Loops; Infinite recursion; Neverending Loop; Alderson loop; While(true); While (true); While (True); While(True); While(TRUE); While (TRUE); While (1); While(1); For(;;); For (;;); Tight loops; Tight Loops; Tight Loop; Never ending loop; Infinite loops; Infinite Loop; Endless Loop (computing); Infinity loop; Unproductive loop; Infinite iteration; Unconditional loop; Unconditional loops; Endless loops
ατέρμων βρόχος

Definition

tail recursion
<programming> When the last thing a function (or procedure) does is to call itself. Such a function is called tail recursive. A function may make several recursive calls but a call is only tail-recursive if the caller returns immediately after it. E.g. f n = if n < 2 then 1 else f (f (n-2) + 1) In this example both calls to f are recursive but only the outer one is tail recursive. Tail recursion is a useful property because it enables {tail recursion optimisation}. If you aren't sick of them already, see recursion and {tail recursion}. [Jargon File] (2006-04-16)

Wikipedia

Alpha recursion theory

In recursion theory, α recursion theory is a generalisation of recursion theory to subsets of admissible ordinals α {\displaystyle \alpha } . An admissible set is closed under Σ 1 ( L α ) {\displaystyle \Sigma _{1}(L_{\alpha })} functions, where L ξ {\displaystyle L_{\xi }} denotes a rank of Godel's constructible hierarchy. α {\displaystyle \alpha } is an admissible ordinal if L α {\displaystyle L_{\alpha }} is a model of Kripke–Platek set theory. In what follows α {\displaystyle \alpha } is considered to be fixed.

The objects of study in α {\displaystyle \alpha } recursion are subsets of α {\displaystyle \alpha } . These sets are said to have some properties:

  • A set A α {\displaystyle A\subseteq \alpha } is said to be α {\displaystyle \alpha } -recursively-enumerable if it is Σ 1 {\displaystyle \Sigma _{1}} definable over L α {\displaystyle L_{\alpha }} , possibly with parameters from L α {\displaystyle L_{\alpha }} in the definition.
  • A is α {\displaystyle \alpha } -recursive if both A and α A {\displaystyle \alpha \setminus A} (its relative complement in α {\displaystyle \alpha } ) are α {\displaystyle \alpha } -recursively-enumerable. It's of note that α {\displaystyle \alpha } -recursive sets are members of L α + 1 {\displaystyle L_{\alpha +1}} by definition of L {\displaystyle L} .
  • Members of L α {\displaystyle L_{\alpha }} are called α {\displaystyle \alpha } -finite and play a similar role to the finite numbers in classical recursion theory.
  • Members of L α + 1 {\displaystyle L_{\alpha +1}} are called α {\displaystyle \alpha } -arithmetic.

There are also some similar definitions for functions mapping α {\displaystyle \alpha } to α {\displaystyle \alpha } :

  • A function mapping α {\displaystyle \alpha } to α {\displaystyle \alpha } is α {\displaystyle \alpha } -recursively-enumerable, or α {\displaystyle \alpha } -partial recursive, iff its graph is Σ 1 {\displaystyle \Sigma _{1}} -definable in ( L α , ) {\displaystyle (L_{\alpha },\in )} .
  • A function mapping α {\displaystyle \alpha } to α {\displaystyle \alpha } is α {\displaystyle \alpha } -recursive iff its graph is Δ 1 {\displaystyle \Delta _{1}} -definable in ( L α , ) {\displaystyle (L_{\alpha },\in )} .
  • Additionally, a function mapping α {\displaystyle \alpha } to α {\displaystyle \alpha } is α {\displaystyle \alpha } -arithmetical iff there exists some n ω {\displaystyle n\in \omega } such that the function's graph is Σ n {\displaystyle \Sigma _{n}} -definable in ( L α , ) {\displaystyle (L_{\alpha },\in )} .

Additional connections between recursion theory and α recursion theory can be drawn, although explicit definitions may not have yet been written to formalize them:

  • The functions Δ 0 {\displaystyle \Delta _{0}} -definable in ( L α , ) {\displaystyle (L_{\alpha },\in )} play a role similar to those of the primitive recursive functions.

We say R is a reduction procedure if it is α {\displaystyle \alpha } recursively enumerable and every member of R is of the form H , J , K {\displaystyle \langle H,J,K\rangle } where H, J, K are all α-finite.

A is said to be α-recursive in B if there exist R 0 , R 1 {\displaystyle R_{0},R_{1}} reduction procedures such that:

K A H : J : [ H , J , K R 0 H B J α / B ] , {\displaystyle K\subseteq A\leftrightarrow \exists H:\exists J:[\langle H,J,K\rangle \in R_{0}\wedge H\subseteq B\wedge J\subseteq \alpha /B],}
K α / A H : J : [ H , J , K R 1 H B J α / B ] . {\displaystyle K\subseteq \alpha /A\leftrightarrow \exists H:\exists J:[\langle H,J,K\rangle \in R_{1}\wedge H\subseteq B\wedge J\subseteq \alpha /B].}

If A is recursive in B this is written A α B {\displaystyle \scriptstyle A\leq _{\alpha }B} . By this definition A is recursive in {\displaystyle \scriptstyle \varnothing } (the empty set) if and only if A is recursive. However A being recursive in B is not equivalent to A being Σ 1 ( L α [ B ] ) {\displaystyle \Sigma _{1}(L_{\alpha }[B])} .

We say A is regular if β α : A β L α {\displaystyle \forall \beta \in \alpha :A\cap \beta \in L_{\alpha }} or in other words if every initial portion of A is α-finite.